Locally $\Sigma$-spaces
نویسندگان
چکیده
منابع مشابه
Locally Nameless Sigma Calculus
We present a Theory of Objects based on the original functional ςcalculus by Abadi and Cardelli [1] but with an additional parameter to methods. We prove confluence of the operational semantics following the outline of Nipkow’s proof of confluence for the λ-calculus reusing his general Commutation.thy [4] a generic diamond lemma reduction. We furthermore formalize a simple type system for our ς...
متن کاملAsymmetric locally convex spaces
The aim of the present paper is to introduce the asymmetric locally convex spaces and to prove some basic properties. Among these I do mention the analogs of the EidelheitTuckey separation theorems, of the Alaoglu-Bourbaki theorem on the weak compactness of the polar of a neighborhood of 0, and a Krein-Milman-type theorem. These results extend those obtained by Garcı́a-Raffi et al. (2003) and Co...
متن کاملLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
متن کاملSeminorms and Locally Convex Spaces
The first point is to describe vector spaces with topologies arising from (separating) families of semi-norms. These all turn out to be locally convex, for straightforward reasons. The second point is to check that any locally convex topological vectorspace's topology can be given by a collection of seminorms. These seminorms are made in a natural way from a local basis consisting of balanced c...
متن کاملQuasi-barrelled Locally Convex Spaces
1. R. E. Lane, Absolute convergence of continued fractions, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 904-913. 2. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380. 3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. 4. H. S....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1983
ISSN: 0035-7596
DOI: 10.1216/rmj-1983-13-3-513